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COMPUTATION OF NIELSEN NUMBERS FOR

CERTAIN MAPS OF HYPERBOLIC SURFACES

Seung Won Kim*

Abstract. Let X be a closed surface for which the Euler charac-
teristic χ(X) is negative, and let f : X → X be a self-map that is
not surjective. In this short paper, we prove that we can compute
the Nielsen number of f , N(f), under some algebraic conditions.

1. Introduction

Let X be a hyperbolic surface, that is, a compact connected surface
for which the Euler characteristic χ(X) is negative and let f : X → X
be a self-map. The Nielsen number of f , N(f), is a homotopy invariant
and provides a lower bound for the minimum number of fixed points
over all maps homotopic to f . See [1, 5, 8] for the background.

Unfortunately, computing the Nielsen number is difficult and it is
particularly difficult on hyperbolic surfaces. See [2, 7, 12] for the details.
But recently, for X a hyperbolic surface with boundary, many methods
are developed in the papers [3, 4, 9, 10, 13, 14] to compute the Nielsen
number N(f).

In this paper, we will first introduce briefly these methods. Then for
X a closed hyperbolic surface, we will show that we can apply those
methods to compute the Nielsen number N(f) on X. The result in this
paper is a partial answer to one of open problems in [7]. The question
is that is there an algorithm for the calculation of the Nielsen number
for a self-map of a surface?
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2. Nielsen number on hyperbolic surfaces with boundary

Let X be a hyperbolic surface with boundary. Then X is homotopy
equivalent to a wedge of a finite number of circles and has fundamental
group π1(X) that is a finitely generated free group. Let {a1, · · · , an}
be a set of generators of π1(X). Let f : X → X be a self-map and
let f# : π1(X) → π1(X) be the induced endomorphism of f . Since the
Nielsen number is a homotopy type invariant [5, p. 21], we may assume
that X is a wedge of a finite number of circles if necessary.

Let G be a group and let ϕ : G→ G be an endomorphism. Two ele-
ments u, v ∈ G are Reidemeister equivalent, also called twisted conjugate,
if there exists z ∈ G such that

(2.1) u = ϕ(z)vz−1.

The challenge in computing N(f) on X is determining whether two
elements in π1(X) are Reidemeister equivalent with ϕ = f#. See [2] for
the background.

In 1999, Wagner introduced an algorithm, which is now called Wag-
ner’s algorithm, for computing N(f) on X. Wagner’s algorithm applies
to maps with remnant. For each i, the word f#(ai) has remnant if there
is a nontrivial subword of f#(ai) which does not cancel in any product
of the form

f#(aj)
±1f#(ai)f#(ak)

±1

except if j or k equals i and the exponent is −1. The map f has remnant
if every word f#(ai) has remnant.

Theorem 2.1 ([13]). If f : X → X has remnant, we can compute
the Nielsen number N(f) by Wagner’s algorithm.

Wagner’s remnant was extended to k-remnant(k ∈ N) in [4]. The
remnant condition requires that there is limited cancellation in each
product f#(u)f#(v) when u and v have length 1. Roughly, a map has
k-remnant if there is limited cancellation in each product f#(u)f#(v)
when u and v have length k in π1(X).

Theorem 2.2 ([4]). If f : X → X has k-remnant, there is an
algorithm for computing the Nielsen number N(f).

Hart in [2, 3] developed also two other algebraic methods, MRN
maps (when π1(X) is free on two generators) and 2C3 maps, for de-
termining the Nielsen equivalence classes. Roughly, these maps have
partial remnant and have some restrictions on the cancellation in the
word product among images of generators ai under f#.
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Theorem 2.3 ([3]). For MRN maps and 2C3 maps, we can de-
termine the Nielsen equivalence classes, so we can compute the Nielsen
numbers.

In the paper [10], Wagner’s idea was extended in a different way. The
possible lengths of solutions were considered to Equation (2.1). Let F be
a finitely generated free group and let ϕ : F → F be an endomorphism.
A pair (u, v) of two elements of F has bounded solution length (or BSL)
if there exists an integer n such that there is no solution z ∈ F with
|z| > n to the equation (2.1)

u = ϕ(z)vz−1.

The smallest such n is called the solution bound (or SB) for (u, v).
Given any pair (u, v) of elements of F , if (u, v) has BSL, we can al-

gorithmically determine whether or not u and v are Reidemeister equiv-
alent by checking for equality of u = ϕ(z)vz−1 where z ranges over all
elements of F with |z| ≤ SB. For a map f : X → X, if any pair of
two elements in π1(X), each of which represents a fixed point class of f ,
has BSL for the endomorphism ϕ = f# then we say that f has bounded
solution length (BSL). The maximum of all SB for such pairs is called
the solution bound (SB) for f .

Theorem 2.4 ([10]). If f : X → X has BSL (and we know the SB
for f), then we can algorithmically determine the Nielsen equivalence
classes, so we can compute N(f).

Let X be the pants surface, the 2-sphere with three disjoint open
disks removed, or more generally, let X be a compact polyhedron that
is homotopy equivalent to the figure-eight. Yi and this author in [11, 14]
extended Wagner’s work using the concept of the mutant of a map, which
had been introduced by Jiang [6], so that an algorithm for computing
the Nielsen number on X was completed.

Theorem 2.5 ([11]). Let X be an aspherical figure-eight type finite
polyhedron and let f : X → X be a self-map. There is an algorithm for
computing the Nielsen number N(f).

This algorithm is now called the WYK-algorithm.

3. Nielsen number on closed hyperbolic surfaces

Let X be a closed surface of genus n ≥ 2. Then we have

π1(X) = 〈a1, a2, · · · , a2n−1, a2n | a1a2a
−1
1 a−1

2 · · · a2n−1a2na
−1
2n−1a

−1
2n 〉
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where the relator is the product of n commutators. Let f : X → X be a
self-map and let f# : π1(X)→ π1(X) be the induced endomorphism of
f . Let F be the free group on the generators {a1, a2, · · · , a2n}. Given a
particular representation of f#, let f#F : F → F be the homomorphism
for which f#(ai) and f#F (ai) look identical as strings of letters for each
generator ai. The notation f#F was introduced in [2] and we use the
same notation in this section.

Theorem 3.1. Let X be a closed hyperbolic surface and let f : X →
X be a self-map that is not surjective. If f satisfies one of the following:

1. f#F has remnant or k-remnant,
2. f#F is a 2C3 map,
3. f#F has BSL,

then there is an algorithm for computing the Nielsen number N(f).

Proof. Let X be a closed hyperbolic surface of genus n and let f :
X → X be a self-map that is not surjective. Take a point x in X−f(X).
Let A be a regular neighborhood of a wedge of 2n circles and identify
A with a strong deformation retract of X − {x}. Then for the subspace
A of X, we may consider that the wedge point is the base point of X
and that each circle with fixed orientation represents ai-loop. Since A is
a strong deformation retract of X − {x}, which contains f(X), and the
Nielsen number is a homotopy invariant, we may assume that the image
of f is into A. For instance, we can retract the image of f into A using
a strong deformation retraction of X − {x} onto A.

Let f̄ : X → A be the corestriction of f to A. Then

f = i ◦ f̄
where i : A → X is the inclusion map. Let fA : A → A be the map
obtained from f by commutation, that is

fA = f̄ ◦ i.

X
f //

f̄

��

X

f̄

��
A

i

>>

fA

// A

Since the Nielsen number has the commutativity property, we have

N(f) = N(fA).
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The subspace A of X is a hyperbolic surface with boundary and π1(A) =
F . For each i, we have

(fA)#(ai) = f̄# ◦ i#(ai) = f̄#(ai) = f#F (ai).

Thus we have

(fA)# = f#F .

Consequently, if f#F has remnant or k-remnant (resp. f#F is a 2C3 map,
f#F has BSL), then by Theorem 2.1 or Theorem 2.2 (resp. Theorem 2.3,
Theorem 2.4), there is an algorithm for computing N(fA), which equals
N(f).

Since f#F (F ) is a subgroup of the free group F , the group f#F (F )
is also a free group.

Theorem 3.2. Let X be a closed hyperbolic surface and let f :
X → X be a self-map that is not surjective. If the rank of the free
group f#F (F ) is 2 then there is an algorithm for computing the Nielsen
number N(f).

Proof. Using the same arguments in the proof of Theorem 3.1, we
have that N(f) = N(fA) and (fA)# = f#F , where A and fA are the
same as that in the proof of Theorem 3.1. Thus we will show that there
is an algorithm for computing N(fA).

Let Y be the figure-eight and let F2 be the fundamental group of
Y that is a free group of rank 2. Since (fA)#(F ) = f#F (F ) is also a
free group of rank 2, the homomorphism (fA)# factors through F2, that
is, there are homomorphisms φ : F → F2 and ψ : F2 → F such that
(fA)# = ψ ◦ φ.

F
(fA)# //

φ

��

F

F2

ψ

??

Since A and Y are K(π, 1)-spaces, there are maps g : A → Y and
h : Y → A such that g# = φ, h# = ψ and h ◦ g is homotopic to fA so
that we have

N(fA) = N(h ◦ g).
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A
fA //

g

��

A

g

��
Y

h

??

fY

// Y

Let fY = g ◦ h be the commutation of h ◦ g. Then fY is a self-map
of Y and since the Nielsen number has the commutativity property, we
have

N(fA) = N(fY ).

By Theorem 2.5, there is an algorithm for computing N(fY ).
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